Small Business Innovation Research/Small Business Tech Transfer

Advanced Simulation Framework for Design and Analysis of Space Propulsion Systems, Phase I

Completed Technology Project (2009 - 2010)

Project Introduction

The innovation proposed here is a computational framework for high performance, high fidelity computational fluid dynamics (CFD) to enable accurate, fast and robust simulation of unsteady turbulent, reacting or nonreacting flows involving real or ideal fluids in several applications. This framework will provide a state-of-the-art unsteady turbulent flow simulation capability employing Hybrid RANS-LES (HRLES) methods which are a blend of Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) approaches. Low-dissipation schemes will be employed which will enable highfidelity modeling of unsteady flows as well as acoustic fields. Additionally, Lagrangian particle tracking and Eulerian multiphase models will be incorporated to enable simulation of multiphase combustion involving solid particles or liquid droplets. The work proposed here will result in a state-ofthe-art design and analysis tool to enable the accurate modeling of: (a) multiphase combustion in solid and liquid rocket engines, (b) combustion stability analysis (c) acoustic fields of space propulsion systems in nearground operation, (d) small valves and turbopumps, etc. which constitute critical components of versatile space propulsion engines part of NASA's Constellation Program.

Primary U.S. Work Locations and Key Partners

Advanced Simulation Framework for Design and Analysis of Space Propulsion Systems, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Transitions	2
Project Management	
Technology Areas	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Marshall Space Flight Center (MSFC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Advanced Simulation Framework for Design and Analysis of Space Propulsion Systems, Phase I

Completed Technology Project (2009 - 2010)

Organizations Performing Work	Role	Туре	Location
★Marshall Space Flight Center(MSFC)	Lead Organization	NASA Center	Huntsville, Alabama
Streamline Numerics, Inc.	Supporting Organization	Industry	Gainesville, Florida

Primary U.S. Work Locations	
Alabama	Florida

Project Transitions

January 2009: Project Start

January 2010: Closed out

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Siddharth Thakur

Technology Areas

Primary:

- TX09 Entry, Descent, and Landing

